H^1-stability of mKdV multi-kinks

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability Analysis of Π-kinks in a 0-π Josephson

We consider a spatially non-autonomous discrete sine-Gordon equation with constant forcing and its continuum limit(s) to model a 0-π Josephson junction with an applied bias current. The continuum limits correspond to the strong coupling limit of the discrete system. The nonautonomous character is due to the presence of a discontinuity point, namely a jump of π in the sine-Gordon phase. The cont...

متن کامل

The stability analysis of the periodic traveling wave solutions of the mKdV equation

The stability of periodic solutions of partial differential equations has been an area of increasing interest in the last decade. In this paper, we derive all periodic traveling wave solutions of the focusing and defocusing mKdV equations. We show that in the defocusing case all such solutions are orbitally stable with respect to subharmonic perturbations: perturbations that are periodic with p...

متن کامل

Dynamics of lattice kinks

We consider a class of Hamiltonian nonlinear wave equations governing a field defined on a spatially discrete one dimensional lattice, with discreteness parameter, d = h, where h > 0 is the lattice spacing. The specific cases we consider in detail are the discrete sine-Gordon (SG) and discrete φ models. For finite d and in the continuum limit (d → ∞) these equations have static kink-like (heter...

متن کامل

On the stability of multi-m-Jensen mappings

In this article, we introduce the multi-$m$-Jensen mappings and characterize them as a single equation. Using a fixed point theorem, we study the generalized Hyers-Ulam stability for such mappings. As a consequence, we show that every multi-$m$-Jensen mappings (under some conditions) is hyperstable.

متن کامل

Rogue periodic waves of the mKdV equation

Rogue periodic waves stand for rogue waves on the periodic background. Two families of traveling periodic waves of the modified Korteweg–de Vries (mKdV) equation in the focusing case are expressed by the Jacobian elliptic functions dn and cn. By using one-fold and twofold Darboux transformations, we construct explicitly the rogue periodic waves of the mKdV equation. Since the dn-periodic wave i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journées Équations aux dérivées partielles

سال: 2011

ISSN: 0752-0360

DOI: 10.5802/jedp.80